

Informe de resultado de los ensayos realizados en el proyecto MECACEM

a 29 de abril de 2025

INTRODUCCIÓN

El trabajo desarrollado por INTIA (Instituto Navarro para las Tecnologías e Infraestructuras Agroalimentarias), está enfocado en la acción 1 del proyecto Mecacem, acción que se resume con el siguiente objetivo:

Objetivo principal: Mejoras en la producción y diferenciación de cebadas con aptitud para maltería: Las empresas de maltería exigen cebadas de unas variedades determinadas y con unos porcentaje de proteína concretos (entre el 9% y el 11,5%). La cantidad de proteína de la cebada maltera está muy influenciada por la fertilización nitrogenada de las parcelas, por tanto, para conseguir un mayor valor añadido de este cultivo es importante identificar aquellas variedades y estrategias de fertilización que permitan que el producto final cumpla con los requisitos exigidos por las malterías.

DESARROLLO

Durante el proyecto se establecen parcelas demostrativas en las que se realiza un ensayo de variedades en regadío en Mélida y un ensayo de estrategias de fertilización nitrogenada en distintas variedades de cebada en Barasoain.

El ensayo de variedades se realiza en una parcela de regadío de la Cooperativa de Carcastillo, en Mélida. Se testan todas las variedades de cebada de ciclo corto propuestas en la red GENVCE (Grupo para la Evaluación de Nuevas Variedades de Cultivos Extensivos en España), con algunas variedades añadidas, propuestas por las cooperativas socias de INTIA. Se testan un total de 30 variedades diferentes, en un ensayo con 4 repeticiones. Muchas de estas variedades, son cebadas que la propia industria maltera ya está recomendando, y otras, están en evaluación, en fases más o menos avanzadas.

El ensayo de fertilización por variedad, se realiza en una parcela de secano de la Cooperativa de Valdorba. Se testan 5 variedades demandas actualmente por la industria maltera (RGT Planet, Chronicle, LG Belcanto, Florence y Rubiales), y se las somete a 5 diferentes estrategias de fertilización nitrogenada (0 Unidades Fertilizantes de Nitrógeno, 80 UFN, 110 UFN, 140 UFN y 170 UFN).

RESULTADOS

1. - ENSAYO DE VARIEDADES (Carcastillo)

El ensayo se instala en una parcela de riego por aspersión de la cooperativa de Carcastillo, en concreto en la localidad de Mélida.

El ensayo consta de un total de 30 variedades, de las cuales 14 son propuestas por la red GENVCE y las 16 restantes son propuestas por INTIA basándose en peticiones de las propias cooperativas o en el interés técnico que se vea en alguna de ellas. Se ejecuta dicho en ensayo a 4 repeticiones.

El objetivo principal del ensayo es buscar la adaptación de las variedades de cebada de ciclo corto, variedades malteras, a las condiciones agroclimáticas de la zona en la que se implanta el ensayo.

Todas las variedades son sembradas en microparcelas, en la misma fecha de siembra, con con las mismas labores realizadas para todas (tratamientos fitosanitarios, fertilización,...).

En la tabla 1, se muestran las variedades ensayadas y la empresa obtentora a la que pertenecen:

VARIEDAD	AÑO	OBTENTOR
1 PEWTER	TESTIGO	AGRUSA
2 RGT PLANET	TESTIGO	RAGT IBÉRICA
3 CHRONICLE	TESTIGO	LIMAGRAIN IBÉRICA
4 RGT DEMETER	1º	RAGT IBÉRICA
5 RGT SKYLAB	1º	RAGT IBÉRICA
6 LG ANDANTE	2º	LIMAGRAIN IBÉRICA
7 LEXY	2º	LIMAGRAIN IBÉRICA
8 FLORENCE	2º	AGRUSA
9 KWSTHALIS	1º	KWS SEMILLAS IBERICA
10 YODA	1º	NEXO GLOBAL TEAM
11 LG FLAMENCO	1º	LIMAGRAIN IBÉRICA
12 RGT ECLIPSE	1º	RAGT IBÉRICA
13 STING	pre-GENVCE	MAS SEEDS (AGRAR SEMILLAS)
14 SKYWAY	pre-GENVCE	SEMILLAS BATLLE
15 RUBIALES	R	SEMILLAS BATLLE
16 FANDAGA	R	MAS SEEDS (AGRAR SEMILLAS)
17 KLARINETTE	R	MAS SEEDS (AGRAR SEMILLAS)
18 KWS CHRISSIE	R	KWS SEMILLAS IBERICA
19 RGT GAGARIN	R	DISASEM
20 VALÉRIAN	R	AGRUSA
21 SY SOLAR	R	SYNGENTA
22 GUSTAV	R	LIMAGRAIN IBÉRICA
23 MAGALLON	R	A GROM ONE GROS
24 RUBIANA	R	SEMILLAS BATLLE
25 LG BELCANTO	R	LIMAGRAIN IBÉRICA
26 AMIDALA	R	MAS SEEDS (AGRAR SEMILLAS)
27 TRAVELER	R	MAS SEEDS (AGRAR SEMILLAS)
28 LAUREATE	R	AGRUSA
29 RGT ASTEROID	R	RAGT IBÉRICA
30 RGT ORBITER	R	RAGT IBÉRICA

Tabla 1.- Variedades ensayadas

A continuación, se muestra una tabla con los resultados productivos de las variedades ensayadas.

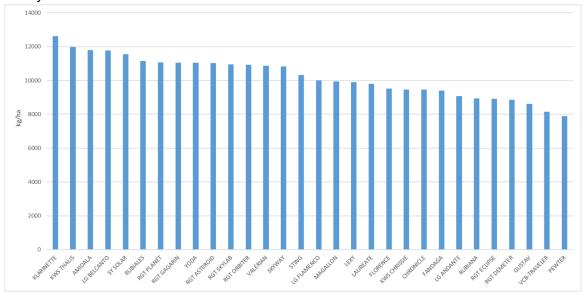


Gráfico 1.- Tabla de rendimientos del ensayo de variedades.

		,			_,											
								/.				/ /	/ /	/ ,	/ ,	/ /
	RENDMARKET		/	/ /		′	BUCKURDO	Mero)	/ ,	/ ,	/ /		/.		BLANTIC SCHOOL	, /
		اعد	oith	/ /			/33	STERECU LEVE LEVE	301				AMETIA STAROLS	6	ORIOS	MA CORORANA REMAN
,	/	Jugn.V	' /	250	lan.		100	120				(cm)	SPA	REALL	1580	Z RILLY
	/	22/0/10	/. /	apply,	(May)	_	CAFURIL	080	/2.	/.	OKA /	MAR	MCH	200gr /	MIN	
	150	5,	23% /N	. S	⁵⁰ /2	165° /	ENO /	SHOU /	Shir /	Ini /	St. 15	Di AN	in /o	NO. Y		
rient	TRAILE	/\$	DAU OFM	18	RIVA	J.ENI	/2	ANT	(AC)	ONT	, SADI	ENO	ENCI	ENCH	ENO	ENA
Hatamie to	ALINO.	MIN	and Tale	SHANDS W	PROTEINS!	COM	/ECT	SADO IDE PARTI	SIM2 Nº ESPER	He Garac	ALTIA DEP	MCD	INCID.	WCD.	MCD	AD WA ELLAND
KLARINETTE	12300	9.6	50,9	75,6	13,1	69	121	347.4	765	25,2	53	2	8	3 ()	0	. 5
LG BELCANTO	12140	10.6	56.1	75.2	13	73	121	283,9	845	25	62	0	0	6	7	7
KWS THALIS	11679	9.7	50.1	74,9	12.1	73	120	367.4	775	26.6	60	0	0	5	0	5
AMIDALA	11549	10,6	54,2	73,2	12,8	73	119	280,6	905	22,6	66	0	0	6	6	0
RUBIALES	11506	9,7	48,1	75,8	13	68	116	362,4	795	26,4	62	0	0	5	5	6
RGT ORBITER	11419	10,1	51,7	74,6	12,8	69	120	307,3	860	27	73	0	0	7	7	7
SY SOLAR	11296	10,1	53,1	74,2	13	73	125	247,2	825	23,8	50	0	0	5	6	5
RGT PLANET	10892	10,7	55,6	73,7	12,6	67	121	307,3	730	29,6	54	0	0	7	7	0
RGT GAGARIN	10841	10,4	51,6	74,8	12,2	69	121	302,3	645	27,8	53	0	0	6	6	0
STING	10838	9,8	57,6	73,2	12,8	69	120	345,7	760	23	54	0	0	0	8	5
RGT ASTEROID	10745	9,8	52,1	74,3	12,7	74	121	283,9	940	27,4	70	0	0	6	5	5
RGT SKYLAB	10689	9,8	53,4	72,8	12,7	73	121	330,7	735	22,8	57	0	0	6	7	5
VALÉRIAN	10600	9,8	51,7	74,6	13,5	70	116	317,3	850	24,4	60	0	0	6	7	6
LAUREATE	10236	11,2	51,6	73,2	12,9	76	121	307,3	1085	25,6	70	0	0	2	2	0
LG FLAMENCO	9797	10,1	46,5	73,5	12,5	71	125	312,3	880	22,8	50	5	0	6	6	6
SKYWAY	9787	10,3	49,8	74,5	12,8	73	119	300,6	775	26,6	60	0	0	6	5	6
MAGALLON	9734	10,1	47,7	72,3	13,1	73	121	238,8	1060	23,8	55	2	0	5	2	0
LEXY	9720	10,3	54,5	74	13	69	119	285,6	710	24,4	57	0	0	6	6	6
YODA	9709	10,5	47	74,5	12	69	121	315,6	860	24,2	68	0	0	7	0	7
FLORENCE	9396	10,9	52,1	72,6	12,8	71	120	293,9	730	24,4	56	0	0	6	7	0
KWS CHRISSIE	9305	10,5	48,6	73,1	12,9	67	147	292,3	835	27,2	57	0	0	7	6	6
FANDAGA	9273	10,9	52	75	13,6	71	121	305,6	615	26,2	56	0	0	0	7	7
CHRONICLE	9214	9,7	46,9	72,3	13,6	72	116	300,6	750	29	55	0	0	5	0	7
RUBIANA	8862	11,2	52,2	73,6	12,8	73	121	297,3	815	22	54	0	0	0	2	5
RGT ECLIPSE	8757	10,5	48,6	73	12,7	73	121	305,6	730	22,8	49	0	0	6	6	6
RGT DEMETER	8644	10	51,4	70	13,4	75	120	357,4	700	22,6	53	0	0	0	0	0
GUSTAV	8294	10,4	45,9	74	13,3	75	122	278,9	800	23,4	45	0	8	0	0	0
TRAVELER	8017	10,4	44,7	74,6	13,6	75	119	285,6	915	23,8	65	5	7	5	7	0
LG ANDANTE	7792	10,5	54,3	72,6	13,3	73	121	297,3	660	26,8	50	0	0	1	1	0
PEWTER	7744	10,3	47,5	72,2	13,3	69	122	379,1	825	22,7	53	1	0	5	0	5

Tabla 2.- Resultados del ensayo de comparativa de variedades de cebada de primavera.

CONCLUSIONES DEL ENSAYO:

- En primer lugar, tendremos que tener en cuenta que los resultados de un solo ensayo en una sola campaña no son concluyentes, ya que la influencia particular de las condiciones agroclimáticas del lugar del ensayo, pueden hacer que unos materiales se vean particularmente más afectados que otros.
- El nivel productivo del ensayo es muy elevado, destacando variedades como Klarinette o LG Belcanto con rendimientos superiores a los 12.000 kg/ha
- Algunas variedades han presentado un tamaño de grano importante, destacando las variedades Sting y LG Belcanto
- Los niveles de proteína han sido elevados, con una tendencia a que las variedades con menor rendimiento son las variedades que menos proteína presentan.
- La incidencia de las enfermedades no ha sido muy elevada, pero sí que se han podido discriminar diferentes sensibilidades de las variedades evaluadas a las diferentes enfermedades.

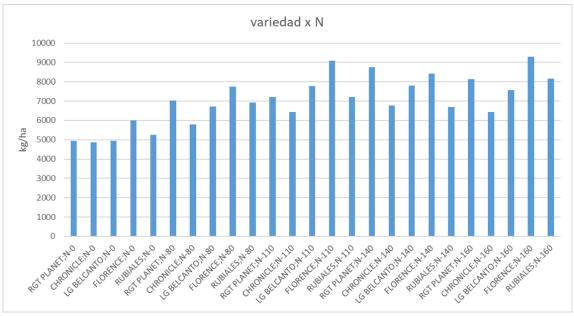
2. – ENSAYO DE NITRÓGENO X VARIEDAD

Este ensayo se instala en Barasoain con un objetivo principal de detectar la diferente eficiencia en el uso del nitrógeno de diferentes variedades de cebada de primavera. Para ello se eligen 5 variedades de cebada, a las que se les aplican 5 estrategias fertilizantes diferentes. De esta manera acabamos evaluando 25 variantes distintas.

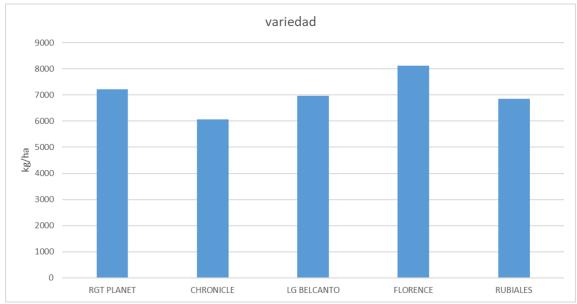
En la tabla 3, se presentan las variantes ensayadas, con 5 variedades (RGT Planet, Chronicle, LG Belcanto, Florence y Rubiales) y 5 estrategias de fertilización (0 UFN, 80 UFN, 110 UFN, 140 UFN y 170 UFN, dando un total de 25 variantes ensayadas.

Tratamiento	UFN
1 RGT PLANET	0
2 CHRONICLE	0
3 BELCANTO	0
4 FLORENCE	0
5 RUBIALES	0
6 RGT PLANET	80
7 CHRONICLE	80
8 BELCANTO	80
9 FLORENCE	80
10 RUBIALES	80
11 RGT PLANET	110
12 CHRONICLE	110
13 BELCANTO	110
14 FLORENCE	110
15 RUBIALES	110
16 RGT PLANET	140
17 CHRONICLE	140
18 BELCANTO	140
19 FLORENCE	140
20 RUBIALES	140
21 RGT PLANET	160
22 CHRONICLE	160
23 BELCANTO	160
24 FLORENCE	160
25 RUBIALES	160

Tabla 3.- Variantes del ensayo de eficiencia del uso del nitrógeno.


La aplicación del fertilizante nitrogenado, se realizó en dos coberteras con una primera de 80 UFN a todas las variantes (excepto el testigo que no llevaba nitrógeno) y una segunda cobertera con la diferenciación de las dosis utilizadas. El resto de operaciones realizadas (fecha de siembra, aplicaciones fitosanitarias,...) fueron las mismas para todo el ensayo.

Al tratarse de un ensayo multifactorial, podemos analizarlo en su conjunto, tal y como muestra la gráfica 2, o individualmente cada uno de los factores estudiados, tal y como muestran las gráficas 3 y 4.



Gráfica 2.- Rendimiento de las variedades en función de la estrategia fertilizante llevada a cabo.

Gráfica 3.- Rendimiento de cada una de las variedades ensayadas.

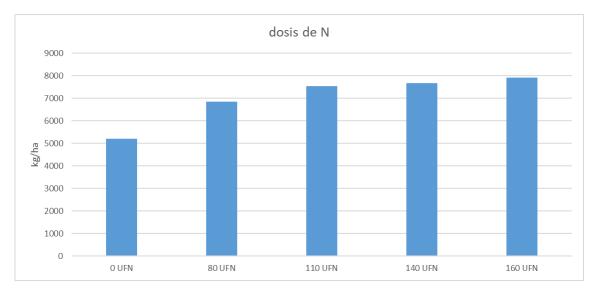


Gráfico 4.- Rendimiento de cada una de las estrategias fertilizantes utilizadas.

Tratamiento	Proteína (%SS)	Duncan							
N140; CHRONICLE	10,05	a							
N110; BELCANTO	9,81	a	b						
N160; CHRONICLE	9,71	а	b	С					
N160; BELCANTO	9,64	a	b	С	d				
N110; CHRONICLE	9,63	a	b	С	d				
N140; BELCANTO	9,59	a	b	С	d	e			
N160; RUBIALES	9,28	a	b	С	d	e	f		
N160; FLORENCE	9,23	a	b	С	d	е	f	g	
N140; RUBIALES	9,20	a	b	С	d	e	f	g	Г
N160; RGT PLANET	9,10	П	b	С	d	e	f	g	Г
N80; CHRONICLE	9,05		b	С	d	е	f	g	Г
N140; RGT PLANET	8,97		b	С	d	e	f	g	
N140; FLORENCE	8,94		b	С	d	e	f	g	
N110; RUBIALES	8,90			С	d	e	f	g	
N80; RUBIALES	8,84			С	d	e	f	g	
N80; BELCANTO	8,81				d	e	f	g	h
N110; FLORENCE	8,73					e	f	g	h
N110; RGT PLANET	8,55						f	g	h
N0; CHRONICLE	8,54						f	g	h
N80; RGT PLANET	8,51						f	g	h
N0; RUBIALES	8,48						f	g	h
N0; RGT PLANET	8,40						f	g	h
N80; FLORENCE	8,38						f	g	h
N0; BELCANTO	8,34							g	h
N0; FLORENCE	7,94								h

Tabla 4.- Nivel de proteína en las variantes estudiadas..

CONCLUSIONES DEL ENSAYO

- En primer lugar, tendremos que tener en cuenta que los resultados de un solo ensayo en una sola campaña no son concluyentes, ya que la influencia agroclimática particular de las condiciones del lugar del ensayo, pueden hacer que unas variantes se vean particularmente más afectadas que otras.
- Lo primero observado es el alto nivel productivo, incluso en las dosis de fertilizante nitrogenado cero, donde de media se superan los 5.000 kg/ha
- Del análisis conjunto del ensayo, se puede extraer como más importante, el hecho de que la variedad Florence se comporta la mejor en todas las variantes

de fertilización, incluso en la variante sin aportación de nitrógeno, lo que a priori puede hacer pensar que se trata de una variedad eficiente en el recurso de nitrógeno que se encuentre en el suelo. Así se demuestra analizando la variedad en cada una de las dosis de fertilización, como valorando la variedad con el resto de materiales (gráfico 3)

- Las dosis de fertilizante creciente, aportan un nivel de rendimiento creciente, pero con una ralentización de dicho incremento a partir de la dosis de 110 UFN.
- El nivel de proteína se ve incrementado en las dosis más altas de fertilizante, aunque no en la misma proporcionalidad.

3.- CONCLUSIONES

En primer lugar, destacar lo ya explicado en cada uno de los ensayos, y es el hecho de que los resultados de un ensayo, no son concluyentes, ya que pueden estar muy influenciados por las condiciones agroclimáticas particulares de la zona en la que se haya encontrado ubicado el ensayo. No obstante, analizando los resultados obtenidos en estos ensayos, uniéndolos a otros resultados preliminares obtenidos en otra experimentación realizada por INTIA, en otras campañas, se puede llegar a decir:

- Productivamente se detectan dos variedades interesantes: Rubiales, con buen comportamiento en situaciones de regadío, y Florence, con un comportamiento interesante en situaciones de secano.
- Hay que controlar la dosis de nitrógeno a aportar a este tipo de variedades, ya que un exceso de la misma, nos puede provocar un incremento innecesario del contenido en proteína del producto obtenido, aspecto que puede perjudicarnos a la hora de obtener un buen producto para la industria maltera. De ahí, que en este tipo de materiales, las dosis de nitrógeno a aportar nunca deberían pasar de las 150 UFN.

